Experimental simulation of quantum dynamics using environments based on spatial variables of light

Daniel F. Urrego, Jefferson Flórez, Jiří Svozilík, Mayerlin Nuñez and Alejandra Valencia
Laboratorio de Óptica Cuántica, Universidad de los Andes, A.A. 4976, Bogota, D.C., Colombia
E-mail: df.urrego1720@uniandes.edu.co
April 6th, 2017

Introduction

At first glance, the interaction of a quantum system with an environment may seem to be detrimental for the information codified in the system. However, it is possible for the system to recover this information [1]. In this project, we used photonic systems to simulate quantum dynamics. We used the polarization as the quantum system and the transverse momentum of light as its environment [2]. Manipulating the environment by means of interference effects [3], we studied the transition from Markovian to Non-Markovian. We identified the type of dynamics generated by means of the trace distance, fidelity and relative entropy.

Quantum System + Environment

<table>
<thead>
<tr>
<th>Light Sources</th>
<th>Environment preparation (spatial variable)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quantum system preparation (polarization)</td>
</tr>
<tr>
<td></td>
<td>Coupling/Temporal Evolution</td>
</tr>
<tr>
<td></td>
<td>Quantum dynamics characterization</td>
</tr>
</tbody>
</table>

\[
|\psi\rangle = \int d\Omega (|\psi\rangle |\psi\rangle |\psi\rangle = N e^{-i\vec{p}\cdot\vec{q}} |1 - \cos(2\delta q)| \]

\[
|\varphi\rangle = \alpha |H\rangle + \beta |V\rangle
\]

\[
U(y)|\psi\rangle = e^{-i\Phi(y)}|\psi\rangle, \quad U(y)|\Phi\rangle = U(y)|\Phi(0)\rangle
\]

- Where \(y \) simulates the temporal variable.

\[
\rho^s(y) = \left(\begin{array}{cc} |\alpha|^2 & \alpha^*\beta \kappa(y) \\ \alpha\beta^* \kappa(y) & |\beta|^2 \end{array} \right)
\]

\[
\kappa(y) = \int dq f(q) |q|^2 e^{i2\delta q}
\]

Characterization of systems dynamics

Trace Distance

\[
D(\rho_1, \rho_2, y) = \frac{1}{2} \text{Tr}(|\rho_1 - \rho_2|)
\]

Fidelity

\[
F(\rho_1, \rho_2, y) = \sqrt{\text{Tr}[\rho_1 \rho_2] + 2\sqrt{\text{det}(\rho_1)\text{det}(\rho_2)}}
\]

Relative Entropy

\[
S(\rho_1, \rho_2, y) = \frac{1}{2} \ln \left(\frac{1 - \kappa(y)}{1 - \kappa(y)} \right) + \frac{1}{2} \ln \left(\frac{1 + \kappa(y) - \gamma_1 \kappa(y) - 1}{1 + \kappa(y) - \gamma_2 \kappa(y) - 1} \right)
\]

Experimental Results

The experimental results of the dynamics of the quantum system for different environments. The experimental data corresponds to diagonal and anti-diagonal initial polarization states. The Dots are the experimental data and the solid lines are the theoretical model.

Markovian

Non-Markovian

Conclusions

- We simulated different quantum dynamics using photons. In particular, the polarization and transverse momentum of light serve as system and environment, respectively.
- Engineering of the transversal profile of light offers us the possibility to change the dynamics of the system. i.e., the transition from Markovian to non-Markovian.
- The dynamics of a quantum system were characterized by the relative entropy, \(S(y)\), fidelity, \(F(y)\), and trace distance, \(D(y)\).

Bibliography