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Abstract

We report an experimental realization of quantum state tomography of a photonic ensemble for
single and two-qubit polarization states. Our implementation is based on the work by James,
Kwiat, Munro and White [1] which provides good tomographic reconstructions based on local
projective measurements. We describe the theory and experimental tomographic measurement
for single qubit states prepared from a laser source and present the tomographic reconstruction
of the density matrices of three orthogonal bases. Furthermore, we also describe the theory and
experimental realization of a quantum state tomography of the two polarization degrees of freedom
of a pair of entangled photons generated in a down-conversion experiment. Two different techniques
are discussed: a linear reconstruction, where the density matrix is constructed from coincidence
measurements but with the caveat of possibly producing non-physical density matrices, and a
maximum likelihood estimation technique that produces physical density matrices. Finally, we also
discuss temporal compensation of the down-converted photons in type II BBO crystal and its effect
on the tomographic reconstruction of 2-qubit states and present the tomographic reconstruction of
the density matrix for an SPDC source.

Keywords: Quantum state Tomography, Quantum process Tomography, Polarization states,
qubits, Stokes Parameters, Entanglement.

1. Introduction

Tomography of quantum states is an experimental procedure to determine the quantum state of a
system. Thus, a sequence of identical measurements in different bases allow the reconstruction via
a maximum likelihood estimation of a complete quantum state. The theoretical ideas for quantum
state tomography (QST) were introduced by Fano in 1957 [2]. The first approach towards the
determination of the state of a system using tomographic techniques was developed by Vogel and
Risken in 1989 [3] for continuous variables. The QST for finite dimensional systems was proposed
by Leonhardt in 1995 [4], and is experimentally implemented by measuring the quantum mechan-
ical analogs of Stokes parameters, from which the quantum-polarization state of an ensemble of
photonic qubits is inferred. Today QST is the cornerstone of experimental quantum information
with quantum systems, especially in quantum computing applications using qubits. QST is used as
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a benchmark in the quality of entangled photon pairs, and it is widely used to measure polarization
entanglement. Entanglement has a remarkable role in quantum optics and quantum information
experiments, quantum cryptography and quantum teleportation. Today the most common method
for the generation of entangled photon pairs is by means of spontaneous parametric down conver-
sion (SPDC) in non-linear crystals.

In this project, we are interested in using QST to determine the quantum-polarization state of
a pair of possibly entangled photons generated by an SPDC optical setup in the quantum optics
laboratory. Furthermore, we will gather and statistically analyze the experimental data using com-
putational software such as Labview and Mathematica in order to do numerical computations and
plots.

This project is divided as follows: The first stage consists of understanding and performing a QST
to a laser light source (single qubit) prepared into different polarization states with waveplates.
The second stage is devoted to understanding and performing a 2-qubit QST to reconstruct the
density matrix of an ensemble of possibly entangled photons produced via SPDC in a non-linear
crystal.

2. Single qubit quantum state tomography

2.1. Theoretical preliminaries

2.1.1. Polarization

represents a two-level system and is often referred to as a qubit.
In quantum mechanics one says that a vertically polarized photon is in state |V 〉, and in a similar
manner |H〉 represents a horizontally polarized photon, these two states form the basis of a two
dimensional Hilbert space. The general polarization state vector of a photon in Hilbert space is
written as

|ψ〉 = cos

(
θ

2

)
|H〉+ sin

(
θ

2

)
eiϕ |V 〉 (1)

where θ and ϕ represent the two coordinates on the surface of the Bloch sphere, which means that
|ψ〉 lies in the surface of the Bloch sphere [5]. A state like Eq.(1) represents a two-level system and
is often referred to as a qubit. Any state generated by combinations of θ, φ in Eq.(1) is known as
a pure quantum state.

2.1.2. Density Matrix

Hereafter it will be of use to us to use a representation of quantum states known as density matrix
representation. Such a representation is general and can be applied to both pure a mixed quantum
states. A mixed quantum state is defined as an statistical ensemble of pure states and can not be
described as a ket vector in Hilbert space like Eq.(1). Rather it is described by a density matrix,
defined as follows

ρ =
∑
s

Ps |ψs〉 〈ψs| (2)
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where Ps is the probability of finding each pure state |ψs〉 in the aforementioned ensemble. The
ensemble expectation value of any observable can be computed using the density matrix of the
system in the following way

〈A〉 =
∑
s

Ps〈ψs|A|ψs〉 = tr(ρA) (3)

2.1.3. Stokes parameters

Any single qubit state density matrix can be uniquely represented by four parameters, {S0, S1, S2, S3},
as

ρ =
1

2

3∑
i=0

Siσi (4)

where the σi are the standard Pauli matrices plus the identity (σ0). From Eq.(4) one can compute
the value of Si simply by

Si = tr(ρσi) (5)

From the previous relation it follows that:

– S0 = 1.

– For a pure state
∑3

i=1 S
2
i = 1.

– For a mixed state
∑3

i=1 S
2
i < 1.

– For the maximally mixed state
∑3

i=1 S
2
i = 0.

For photon polarization, the appropriately normalized set of Si are known as the Stokes parame-
ters[6].

2.1.4. The photonic case

As we are going to be working with qubit polarization states from a photonic source the following
definitions are going to be useful hereafter. A two level photonic system has two basis states,
|H〉 and |V 〉, describing its Hilbert space. Any other pure polarization state is constructed from
superpositions of these two states. The most common pure states constructed from|H〉 and |V 〉 are
the diagonal, anti-diagonal, right-circular and left-circular. This sates are given by the following
superpositions:

|D〉 ≡ 1√
2

(|H〉+ |V 〉)

|A〉 ≡ 1√
2

(|H〉 − |V 〉)

|R〉 ≡ 1√
2

(|H〉 − i |V 〉)

|L〉 ≡ 1√
2

(|H〉+ i |V 〉) . (6)
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And to each of the six states mentioned above corresponds the following density matrix:

ρH =

(
1 0
0 0

)
, ρV =

(
0 0
0 1

)
ρD =

1

2

(
1 1
1 1

)
, ρA =

1

2

(
1 −1
−1 1

)
ρL =

1

2

(
1 −i
i 1

)
, ρR =

1

2

(
1 i
−i 1

)
. (7)

Physically the Stokes parameter of a photonic system are given by the outcome of a set of orthogonal
projective measurements (H/V, D/A, L/R) on the initial state ρ0, viz

S0 = P|H〉 + P|V 〉
S1 = P|D〉 − P|A〉
S2 = P|L〉 − P|R〉
S3 = P|H〉 − P|V 〉, (8)

where P|ψ〉 stands for the probability of projecting state ρ0 into the the state |ψ〉, viz

P|ψ〉 = 〈ψ| ρ |ψ〉 = tr(|ψ〉 〈ψ| ρ).

2.2. Single qubit tomography

In this first stage we use an optical setup consisting of waveplates and polarizers, to perform
projective measurements to different prepared polarization states. With the following convention,

(
0
1

)
= |V 〉 ,

(
1
0

)
= |H〉 , (9)

the effect of the half-wave plate (HWP) and the quarter-wave plate (QWP), with fast axes h and
q respectively, with respect to the vertical direction are given by the matrices

UHWP =
1√
2

(
cos(2h) − sin(2h)
− sin(2h) − cos(2h)

)
(10)

UQWP =

(
i− cos(2q) sin(2q)

sin(2q) −i+ cos(2q)

)
(11)

which means that both waveplates shift the polarization of the incoming light. The HWP changes
the direction of linearly polarized light, while the QWP converts linearly polarized light into cir-
cularly polarized light.

Hence, the projection state for the beam is given by

|ψproj(h, q)〉 = UHWP UQWP |ψ0〉 = a(h, q) |H〉+ b(h, q) |V 〉 , (12)
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where |ψ0〉 is an initial arbitrarily prepared state and a and b are coefficient dependent on the
configuration of the waveplates. We can denote a projection state corresponding to a particular
set of waveplate angles {h, q} by a ket |ψν〉. Hence, the average number of counts in each detector
will be given by

nν = N 〈ψν | ρ |ψν〉 , (13)

where N is a constant dependent on the laser intensity and the detector efficiency. In our setup
the Stokes parameters can be defined from a set of intensity measurements (cf. section 2.3). The
number of photons counted by the detectors are related to the Stokes parameters as follows:

S0 ≡ 2n0 = N (〈H| ρ |H〉+ 〈V | ρ |V 〉) = 1

S1 ≡ 2(n1 − n0) = N (〈D| ρ |D〉 − 〈A| ρ |A〉)
S2 ≡ 2(n2 − n0) = N (〈L| ρ |L〉 − 〈R| ρ |R〉)
S3 ≡ 2(n3 − n0) = N (〈H| ρ |H〉 − 〈V | ρ |V 〉). (14)

(15)

By means of the Stokes parameters one can write the density matrix ρ as:

ρ =
1

2

(
3∑
i=0

Siσi

)
. (16)

Thus, experimentally determining the Stokes parameters is equivalent to a complete tomographic
measurement of the density matrix of an ensemble of single qubits.

2.3. Experimental setup

Figure 1: Experimental setup to make a QST of a single photon where λ
2

and λ
4

stands for HWP and QWP
respectively.

In the first stage, we use the setup depicted in Fig.1. A 808 nm laser source is coupled to an optical
fiber, then passes through a polarizer to set the polarization of the light to vertical. Thus, the
initial state is ρV . A HWP is used to prepare the states ρH , ρA or ρD from the initial ρV ; and a
QWP is used for preparing ρR and ρL (cf. section 2.2).

The Polarization Analyzer (PA) consists also of a HWP, a QWP and a polarization beam splitter
(PBS), connected to an automated software in Labview that sweeps a series of angles on both
HWP and QWP (as seen in Table 1) to project the prepared state in the different basis shown in
Eq.(6). Finally a photo-diode measures the intensity of the light in each specific polarization for
the six projected states mentioned above.
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2.4. Experimental procedure and results

In Table 1 we show the required angles in both HWP and QWP to project ρV , in each of the states
|i〉 for (i = H,A,D,R,L). For the other five prepared polarization states, the process is analogous.

Table 1: Angles h and q to project, in the polarization state |i〉, a vertical state ρV .

State h (o) q (o)

|V 〉 0.0 0.0
|H〉 45.0 0.0
|A〉 22.5 0.0
|D〉 337.5 0.0
|R〉 0.0 315.0
|L〉 0.0 45.0

The software saves one data file containing 1000 intensity measurements from the photodiode, for
each of the configurations in the PA, for each of the six prepared states.

By definition the Stokes parameter S0 = 1, so the normalization factor, in each case, is the sum
of the mean intensity for the measurement with h = q = 0 o and its orthogonal part. Using
Mathematica we compute the mean intensity for each measurement and calculate the normalized
Stokes parameters according to Eq.(8) to reconstruct, via Eq.(16), the density matrix for the
prepared state. The results of our single qubit tomagraphies are:

ρ
(E)
V =

(
0.005 0.022 − 0.217i

0.023 + 0.217i 0.995

)
±∆ρ

ρ
(E)
H =

(
0.996 0.004 − 0.186i

0.004 + 0.186i 0.004

)
±∆ρ

ρ
(E)
A =

(
0.513 −0.485− 0.266i

−0.485 + 0.266i 0.487

)
±∆ρ

ρ
(E)
D =

(
0.509 0.498 − 0.135i

0.498 + 0.135i 0.491

)
±∆ρ

ρ
(E)
R =

(
0.498 −0.171 + 0.493i

−0.171− 0.493i 0.500

)
±∆ρ

ρ
(E)
L =

(
0.480 −0.065− 0.499i

−0.065 + 0.499i 0.520

)
±∆ρ
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Where the superscript E stands for experimental results, and ∆ρ is a matrix that represents an
experimental uncertainty of 0.005 computed as the average of the standard deviations of the six
intensity measurements. The density matrix plots for each of the reconstructed matrices are shown
in AppendixB. Comparing the experimental results with Eq.(7) we see a good agreement with
what is theoretically expected. Of course, there are some errors due to experimental limitations
but the overall result of the tomography is successful since the tomographic reconstruction of the
matrices is very accurate. However, we should note that we perceive a possible systematic error,
seen in the off-diagonal elements of the imaginary part in the density matrices, which we believe
has to do with a poor characterization of the waveplates used, and the possibility that they were
not properly cleaned before our measurement.

3. 2-qubit quantum state tomography

3.1. Theoretical preliminaries

3.1.1. Complete tomographic measurements

As in the single qubit case we think of the projected state vector as the tensor product of each
projected single qubit state

|ψproj(h1, h2, q1, q2)〉 = |ψproj(h1, q1)〉 ⊗ |ψproj(h2, q2)〉 . (17)

We will define a ket |ψν〉 as the result of the ν-th projective measurement corresponding to a
particular combination of the 4 waveplate angles {h1, h2, q1, q2}. Consequently, the average number
of photon counts observed in ou setup will be

nν = N 〈ψν | ρ |ψν〉 , (18)

where ρ is the density matrix representing the photonic ensemble being tomographed and N is a
constant dependent on the intensity of the light and the detectors efficiency.

Analogous to the case of a single qubit where the density matrix could be written as a certain
linear combination of the Pauli matrices, cf. Eq.(16), (which means that the appropriate Hilbert
space is SU(2)), the two-qubit case can be thought of as taking two copies of single qubit Hilbert
spaces each representing one of the qubits in the pair. Thus, the Hilbert space that is of interest is
H = SU(2)⊗SU(2). This Hilbert space is spanned by the 16 2-qubit Pauli matrices σi⊗σj (i, j =
0, 1, 2, 3). Using this 16 matrices, Γν (ν = 1, . . . , 16), as the basis of H, any two-qubit density
matrix can be written as

ρ =

16∑
ν=1

Γνxν , (19)

where xnu is the ν-th component of the vector

xν = tr(Γνρ). (20)
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However, this canonical representation of ρ is not adapted to express the density matri in terms
of quantities we can determine experimentally. To this end we must select an appropriate basis of
H, allowing us to reconstruct the density matrix of the ensemble with the photon counts nν we
measured in the laboratory. The appropriate basis in which we should write our density matrix
is known as the tomographic basis[7]. In this basis, spanned by matrices Mµ (µ = 1, . . . , 16), the
density matrix is written as

ρ =

∑16
µ=1Mµnµ∑4
µ=1 nµ

(21)

for the full mathematical details of how to construct the tomographic basis see AppendixA.

3.1.2. Physical density matrix

We should emphasize that the density matrix Eq.(21) as constructed previously is by construction
Hermitian, i.e. ρ† = ρ, and normalized, i.e tr(ρ) = 1. However, such a construction can not enforce
the matrix to be positive-definite, i.e. that all its eigenvalues are strictly positive 1. And since
any density matrix for physical states must be a positive-definite matrix the linear reconstruction
described in the previous section to obtain a density matrix from coincidence counts is not ap-
propriate, as the tomographic reconstruction violates the positivity of physical density matrices.
As commented in [7] this violation of positivity happens roughly 75% of the time for low entropy
highly entangled states. Hence, we must resort to a maximum likelihood estimation in order to
find a physical density matrix describing our photonic ensemble compatible with the experimental
measurements.

Let us describe how to construct a physical density matrix. Any matrix M is positive-definite if

〈ψ|M |ψ〉 ≥ 0 (22)

for all |ψ〉 6= ~0 . Furthermore, any matrix that can be written in the form M = T †T must be
positive definite since

〈ψ|M |ψ〉 = 〈ψ|T †T |ψ〉 ≥ 0. (23)

Also, since M † = (T †T )† = T †T = M , the matrix M is Hermitian. Obtaining a normalized matrix
from M is straightforward since it amounts only to divide by its trace, viz

ρp =
T †T

tr(T†T)
. (24)

Hence, ρp has all three properties that characterize a physical density matrix and thus, is a valid
parametrization for physical density matrices. For a 2-qubit system, we have a 4 × 4 with 16
independent real parameter. Thus, we can parameterize matrix T as [7]:

1since the eigenvalues of a density matrix represent probabilities the must all be positive.
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T (t1, . . . , t16) =


t1 0 0 0

t5 + it6 t2 0 0
t11 + it12 t7 + it8 t3 0
t15 + it16 t13 + it14 t9 + it10 t4

 , (25)

with the ti’s real. With these parametrization we can obtain an explicit form for the physical
density matrix, ρp, in terms of T (t) simply as

ρp =
T (t)†T (t)

tr(T(t)†T(t))
(26)

where t = {ti}i=1,...,16.

3.1.3. Maximum likelihood estimation

The experimental data consists of 16 coincidence measurements, nν , with expected value 〈nν〉 =
N 〈ψν | ρ |ψν〉. If we assume that the coincidence measurements are independent and normally
distributed, the probability of obtaining a set of 16 measurements is given by

P(nν) =
1

Z

16∏
ν=1

exp

(
−(nν − 〈nν〉)2

2σ2ν

)
, (27)

where Z is an appropriate normalization constant and σν =
√
〈nν〉 is the standard deviation for

the ν-th measurement. In terms of our parametrization of the physical density matrix, ρp, the
expected number of coincidences is

〈nν(t1, . . . , t16)〉 = N 〈ψν | ρp(t1, . . . , t16) |ψν〉 . (28)

Hence, the likelihood that ρp produced the measured data is:

P(t1, . . . , t16) =
1

Z

16∏
ν=1

exp

(
−(nν −N 〈ψν | ρp(t1, . . . , t16) |ψν〉)2

2N 〈ψν | ρp(t1, . . . , t16) |ψν〉

)
, (29)

thus, we need to find the maximum value of P (t1, . . . , t16) which will tell us the most probable set of
parameters ti, and thus the most probable density matrix given our 16 coincidence measurements.
However, it is easier to maximize the logarithm of (29), which is equivalent to minimizing the
function

Λ(t1, . . . , t16) =
∑
ν=1

(nν −N 〈ψν | ρp(t1, . . . , t16) |ψν〉)2

2N 〈ψν | ρp(t1, . . . , t16) |ψν〉
. (30)

We minimized this function numerically in order to find the set of parameters {tν}ν=1,...,16, which
we will use to reconstruct a valid physical density matrix using Eq.(26).

9



3.2. Experimental setup

In the second stage, we use the setup depicted in Fig.2.

• Source: A CrystaLaser source of 405 nm with a bandwidth of 5 nm.

• BBO Crystal: An EKSMA BBO colinear crystal with type II phase matching of thickness
4 mm to produce a pair of SPDC photons with double the wavelength of the source light and
mutually orthogonal polarizations.

• A dichroic mirror is used to reflect the pump of the laser (405 nm), the SPDC photons pass
through it.

• PBS: A polarization beamsplitter divides the horizontal polarization into path A and vertical
polarization into path B.

• BS: A beamsplitter or power-splitter divides by half the power of the incident light into path
A and path B.

• HWP and QWP: A pair of waveplates (HWP and QWP) is used in each polarization analyzer
to project the prepared state in the tomographic basis. The half-wave plates are motorized
and connected to a software; the quarter-wave plates are manually manipulated.

• Photodetector: A PerkinElmer single photon counting module (SPCM-ARQ).

• FPGA: The photodetectors are connected to a field-programmable gate array (FPGA) which
receives their signals and shows the number of coincidence counts2.

3.3. Experimental procedure and results

First, we characterize the 4 waveplates used in the PA’s by setting their respective fast axes to
zero. We compared the number of coincidence counts in the photodetectors with and without the
waveplates in the PA, looking for the angles that produce the same coincidences. After finding
these angles we proceeded to compare the waveplate behavior (by sweeping their angles) with what
is expected from Eqs.(10),(11).

3.3.1. Quantum state tomography using a PBS

In order to test our experimental setup we used a polarization beamsplitter (PBS) to divide the
horizontal polarization into path A and vertical into path B. The recipe in Table 2 is used to project
the prepared state, |H〉A⊗|V 〉B ≡ |HV 〉, in the tomographic basis. The coincidence counts nν are
used to calculate, via Eq.(A.3), the (non-physical) density matrix of the system.
Subsequent to this we used the routine NMinimize in Mathematica to find the optimal parameters
ti in Eq.(30) where the likelihood function, Λ(t), is a minimum. We then reconstructed the physical
density matrix of the system as described in section 3.1. In Fig.3 we plot the experimental results
both for the real and imaginary parts of the density matrix which correspond to the prepared state
using the PBS:

2A coincidence is a count in both detectors, that occur within a time window of 9 ns.
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Figure 2: Experimental setup for the 2 qubit quantum state tomography. State preparation: A laser of 405 nm passes
through a Type II BBO Crystal to produce entangled pairs of photons. A dichoic mirror is used to get rid of the
pump of the laser. Then, an aperture is used to align the light, the filter further filters the remaining 405 nm pump
and finally a lens properly collimates the SPDC light into the PBS (BS) that separates the photons into path A or B.
PA: In each path we have the same polarization analyzer consisting of a motorized HWP (λ/2) and a manual QWP
(λ/4) followed by a PBS and coupled to a multimode optical fiber, finally a single photon detector is connected to a
computer to store the data.

Table 2: Experimental procedure to project the prepared state into the 16 states of the tomographic basis. hA and
qA stand for the angles in the HWP and QWP respectively in the path A, analogous for path B.

ν Mode A Mode B hA (o) qA (o) hB (o) qB (o)

1 |H〉 |H〉 45.0 0.0 45.0 0.0
2 |H〉 |V 〉 45.0 0.0 0.0 0.0
3 |V 〉 |V 〉 0.0 0.0 0.0 0.0
4 |V 〉 |H〉 0.0 0.0 45.0 0.0
5 |R〉 |H〉 22.5 0.0 45.0 0.0
6 |R〉 |V 〉 22.5 0.0 0.0 0.0
7 |D〉 |V 〉 22.5 45.0 0.0 0.0
8 |D〉 |H〉 22.5 45.0 45.0 0.0
9 |D〉 |R〉 22.5 45.0 22.5 0.0
10 |D〉 |D〉 22.5 45.0 22.5 45.0
11 |R〉 |D〉 22.5 0.0 22.5 45.0
12 |H〉 |D〉 45.0 0.0 22.5 45.0
13 |V 〉 |D〉 0.0 0.0 22.5 45.0
14 |V 〉 |L〉 0.0 0.0 22.5 90.0
15 |H〉 |L〉 45.0 0.0 22.5 90.0
16 |R〉 |L〉 22.5 0.0 22.5 90.0

ρPBS
p =


0.003 −0.006− 0.050i −0.000 + 0.000i −0.001− 0.001i

−0.006 + 0.050i 0.991 −0.006− 0.008i 0.030 − 0.021i
−0.000− 0.000i −0.006 + 0.008i 0.000 0.000 + 0.000i
−0.001 + 0.001i 0.030 + 0.021i 0.000 − 0.000i 0.006

 .
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Figure 3: Real part (right) and imaginary part (left) of the physical density matrix corresponding to the state |HV 〉.

3.3.2. Quantum state tomography using a BS

This setup is analogous to the one described in the previous secion, but replacing the PBS for
a beamsplitter (BS). A BS divides roughly by a half the power of incident light (rather than its
polarization components) into the paths A and B. Hence, with this setup, we theoretically expect
to prepare the ensemble in a pure state of the form

|ψexpected〉 =
1√
2

(|HV 〉+ eiφ |V H〉), (31)

where φ is a phase factor due to phase matching conditions, temporal and spatial separation [8].
The state in Eq.(31) corresponds to the density matrix

ρexpected =


0 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 0

 . (32)

After the pair of photons passes the BS we use the recipe in Table 2 to project the state in the tomo-
graphic basis. Again we calculated the physical density matrix of the system using Mathematica,
being

ρBS
p =


0.021 −0.020− 0.008i 0.004 + 0.014i −0.010 + 0.009i

−0.020 + 0.008i 0.515 −0.009 + 0.001i −0.007− 0.019i
0.004− 0.014i −0.009− 0.001i 0.435 0.017 + 0.001i
−0.010− 0.009i −0.007 + 0.019i 0.017− 0.001i 0.029

 ,

which is plotted in Fig.4. We note that the reconstructed density matrix resembles a maximally
mixed state density matrix of the form

ρT =
1

2
(|HV 〉 〈HV |+ |V H〉 〈V H|) =


0 0 0 0
0 1/2 0 0
0 0 1/2 0
0 0 0 0

 , (33)
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rather than a pure state. A density matrix like the one reconstructed in Fig.4 exhibits distin-
guishability between the SPDC photons after passing through the BS, that is, destruction of the
coherences in the system. This is a consequence of a temporal separation, ∆t, between the pair of
photons produced within the BBO crystal. We tried to overcome this handicap by compensating
this delay using another BBO crystal as we will describe shortly.

Figure 4: Real part (right) and imaginary part (left) of the reconstructed physical density matrix.

In quantum information theory, the fidelity, F , is a measure of the closeness of two quantum states,
ρ1 and ρ2, [9], and it is defined as

F(ρ1, ρ2) = tr

(√√
ρ1ρ2
√
ρ1

)
, (34)

where a fidelity of 0 means that the states do not resemble at all, and a fidelity of 1 means the
two states are the same. The fidelity between the experimental results ρBS

p and the theoretical

matrix ρT is: F(ρBS
p , ρT ) = 0.974, which means the reconstructed density matrix is very close to

the theoretical density matrix. Taking the partial trace of ρT results in a 2 × 2 matrix that is
proportional to the identity matrix, which implies it is a maximally entangled state. Given that
the fidelity is close to 1, we can say the tomographically reconstructed density for the SPDC source
represents a mixed, entangled state.

3.3.3. Temporal separation compensation

A BBO Crystal is an uniaxial crystal that has a specific direction called the optical axis. When the
pair of photons is produced, the one polarized in the plane formed by the propagation vector and
the optical axis is called extraordinary (e-polarized), the photon polarized normal to this plane is
said to be ordinary (o-polarized) [8]. The group velocity (that depends on the refractive index) is
then different for e-polarized and o-polarized photons leading to an average arrival delay between
the produced pair. If the temporal separation between the pair of photons produced in the BBO
Crystal is larger than the coherence time of the laser, it can lead to decoherence of the entangled
two-photon states. To compensate this effect one has to add a second BBO Crystal (compensation
crystal), whose optical axis is orthogonal to the first crystal. This means that the e-polarized pho-
ton produced by the first crystal is now o-polarized for the compensation crystal and vice-versa.
Hence, by this compensation, the temporal separation is corrected.
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In our setup (cf. Fig.2) we placed, between the dichroic mirror and the aperture, a 2 mm thick type
II BBO-Crystal with 5 o of half-open angle. Since the second BBO crystal is not colinear3, we had
to tilt it with respect to the colinear one to be able to compensate the temporal delay [1], However,
attempting the compensation of a colinear crystal with a non-colinear one is neither simple nor
ideal, since the tilting may cause further unwanted effects in the polarization state of the ensemble.
The ideal procedure to compensate the temporal delay is by using a compensation crystal with half
the thickness of the first crystal and the same half-open angle [1]. Nevertheless, due to laboratory
availability we did not posses a crystal with the ideal characteristics for the compesation procedure.

Analogous to the previous case, the reconstructed physical density matrix of the system (with the
compensation crystal) is

ρBS−C
p =


0.037 0.000− 0.036i 0.024− 0.031i −0.009− 0.007i

0.000 + 0.036i 0.495 0.005 + 0.004i −0.022 + 0.061i
0.024 + 0.031i 0.005− 0.004i 0.446 −0.006 + 0.037i
−0.009 + 0.007i −0.027− 0.061i −0.006− 0.037i 0.023

 .

Figure 5: Real part (right) and imaginary part (left) of the reconstructed physical density matrix.

In Fig.5 we show graphically the corresponding density matrix after attempting the compensation.
It again resembles the mixed state Eq.(33) rather than the pure state we expect after compensat-
ing the temporal delay. Note that some of the imaginary components of ρBS−C

p got bigger and the
off-diagonal terms (coherences) we expected to correct, according to Eq.(32), remained the same.
This result can be understood as a consequence of using a non-colinear compensation crystal and
trying to tilt it with respect to the first crystal. This means the phase factor in Eq.(31) may not
be corrected by this procedure, but on the contrary, the phase matching can be affected leading
to another unwanted phase causing decoherence [8]. Furthemore, due to the tilting, the distance
traveled by the light inside the compensation crystal is not exactly 2 mm, which can result in
further temporal separation. Hence, our attempt at the time delay compensation without another
colinear crystal was unsuccessful, and we did not obtained the expected pure state.

3Colinear crystals have 0 o of half-open angle.
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4. Conclusions

In this document, we present the implementation and results of single and two-qubit quantum
state tomography. For the single qubit experiment we used a laser source and a set of waveplates
to prepare the polarization state of the source in six different states corresponding to the vertical,
horizontal, diagonal, antidiagonal, right and left polarizations. By means of a single qubit quan-
tum state tomography, we successfully reconstructed the density matrix for the six polarization
states of the three different polarization bases, which were compared to the theoretical predictions
obtaining good agreement.

For the two-qubit tomography, we used SPDC photons produced in a type II BBO crystal and
implement two-qubit quantum state tomography based on measuring the James-Kwiat-Munro-
White projectors for the down-converted photons. We made two different tomographies, using
both a BS and a PBS after the SPDC source. Based on [1] and the requirement of positivity
for density matrices we programmed a maximum likelihood estimation routine to reconstruct the
(physical) density matrix for the ensemble of SPDC photons. After the tomographic reconstruction
of the 2-qubit density matrix we computed its fidelity with a mixed, entangled density matrix and
obtained a value of F = 0.974, which tells us that our experimentally reconstructed density matrix
represents a mixed ensemble of two entangled qubits. However, due to the temporal separation
induced by the nonlinear crystal in the pair of down-converted photons, we could not prepare the
state of the ensemble in the desired pure state. And due to laboratory equipment unavailability, the
proper time compensation of the type II BBO colinear crystal was not possible during this project.
However, the tomographic reconstruction of an entangled 2-qubit SPDC photonic ensemble was
successful.
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AppendixA. Theoretical details

Combining Eq.(18) and Eq.(19) we obtain

nν = N
16∑
µ=1

〈ψν |Γµ |ψν〉xµ. (A.1)

Provided that matrix 〈ψν |Γµ |ψν〉 is invertible we can invert Eq.(A.1) to solve for xµ having a
complete set of tomographic states {ψν}ν=0,...,16

4, viz

xµ =
1

N

16∑
µ=1

(〈ψν |Γµ |ψν〉)−1nµ. (A.2)

These states are the result of setting specific values for the angles of the waveplates in the polar-
ization analyzers. Using Eq.(A.2) we can rewrite Eq.(19) as

ρ =
1

N

16∑
µ=1

Γµ(〈ψν |Γµ |ψν〉)−1nµ =
1

N

16∑
µ=1

Mµnµ, (A.3)

where we have defined the 4× 4 matrix Mµ ≡ Γµ(〈ψν |Γµ |ψν〉)−1. To determine the value of N we
can use the fact that

N =
∑
µ

tr(Mµ)nµ, (A.4)

and that for the set of projective measurements we used

∑
µ

tr(Mµ) =

{
1 if µ = 1, 2, 3, 4

0 if µ = 5, . . . , 16
, (A.5)

hence, N is given simply by

N =
4∑
µ

nµ (A.6)

AppendixB. Single qubit density matrices

In this appendix, we show the respective matrix plots for the six reconstructed density matrices.

4Overall phase factors do no affect the results of projective measurements.
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Figure B.6: Real part (right) and imaginary part (left) of the reconstructed density matrix for a vertical state ρV .

Figure B.7: Real part (right) and imaginary part (left) of the reconstructed density matrix for a horizontal state ρH .
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Figure B.8: Real part (right) and imaginary part (left) of the reconstructed density matrix for an antidiagonal state
ρA.

Figure B.9: Real part (right) and imaginary part (left) of the reconstructed density matrix for a diagonal state ρD.
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Figure B.10: Real part (right) and imaginary part (left) of the reconstructed density matrix for a right state ρR.

Figure B.11: Real part (right) and imaginary part (left) of the reconstructed density matrix for a left state ρL.
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