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This report summarizes the experimental work conducted during the semester in order to ob-

serve and characterize both integer and fractional Talbot effects.

We begin by introducing the

basic theoretical framework behind self-imaging in periodic structures. Then, we present a detailed
characterization of the Gaussian beam used for illumination of the grating, discussing the limita-
tions imposed by its propagation profile. Finally, we describe the choice of grating parameters, our
measurement strategy, and the results obtained for both integer and fractional Talbot distances,
emphasizing the experimental challenges and outlining improvements for future work.

I. INTRODUCTION

In 1836, Lord Talbot reported the surprising phe-
nomenon of self-imaging that occurs when a periodic
structure is illuminated by a coherent monochromatic
field. Under constant amplitude plane-wave illumination,
Fresnel diffraction predicts that at specific distances be-
hind a grating, the transmitted field reproduces the grat-
ing’s own transmittance function. These planes, known
as Talbot planes, appear at integer multiples of the Talbot
distance [1],
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where ¢ is the grating period and A the wavelength of
illumination.

At distances z = %zT, with p,q coprime integers, the
intensity pattern splits into g shifted replicas of the grat-
ing structure, each weighted by a phase factor determined
by Gauss sums [2]. A schematic visualization of both
cases is shown in Fig. 1.

FIG. 1. Illustration of the integer (a) and fractional (b) Talbot
effects.

Our goal in this project was to measure both effects ex-
perimentally using the setup shown in Fig. 2. Through-
out the experiment, the illumination was provided by the
V-profile waist of our laser beam (as obtained from the
Gaussian beam characterization). Here, the V and W
waists simply refer to the horizontal and vertical inten-
sity profiles of the Gaussian beam, respectively. They are
essentially 1D cuts of how the light spatially spreads in
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each direction. In our case, we used the horizontal (V)
waist as the illumination region. After the lens system,
approximately 27 slits of the grating were effectively il-
luminated. This number is important, as the formation
of Talbot images strongly depends on the number of il-
luminated grating periods.
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FIG. 2. Experimental setup used for observing integer and
fractional Talbot effects.

II. GAUSSIAN BEAM PROPAGATION

A central part of the project was understanding and
characterizing the Gaussian beam used as illumination.
The transverse intensity profile of a Gaussian beam is [3]
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where w(z) is the beam radius at distance z from the

waist. The minimum radius is the beam waist wq, located
at z = zp. The Rayleigh range,
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defines the region in which the beam retains an approxi-
mately constant radius.

Figure 3 shows the general behavior of a Gaussian
beam. In our experiment, we used a 405 nm diode laser
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FIG. 3. Gaussian beam spatial parameters: waist wo,
Rayleigh range zg, and divergence 6. Taken from [3]

(Crystalaser), characterized with a Coherent BeamMas-
ter. The measurement range extended from z = 0 to
z = Hdcm.

Figure 4 shows the fitted w(z) curves for both the W
and V profiles. The illumination used in the Talbot ex-
periment corresponds to the V-profile waist.

7601 -—-- Fit on W Direction data =
---- Fit on V Direction data -
_ 7401} Direction W ‘j//{
§ }  Direction V /L”
= 720 -
N -
= 700 s
o e
§ e =il
£ 680 =4
3
o
660 g == o l 5
“““ L SN 1 [ et
640 R B . === =
0 10 20 30 40 50 60

Position in propagation axis z [cm]

FIG. 4. Beam waist evolution w(z) for W and V profiles. V-
profile fit: wo = 643.59 + 1.46 um, zo = 584.91 + 2mm, zr =
321.308 4+ 0.18 cm. W-profile fit: wo = 536.64 £ 102.19 pum,
zop = —1637.33 £11.08 mm, zr = 223.4 £ 0.5cm.

The fitted parameters show that the beam is very col-
limated in both profiles because the Rayleigh range is far
larger than the dimensions of our setup. However, the
fitted zo for the W profile is suspicious—its value sug-
gests that the waist would lie outside our optical path.
This inconsistency highlights the need for improved beam
characterization. Moreover, since the Talbot effect as-
sumes plane-wave illumination, the Gaussian profile is a
plausible limiting factor in our observations, though this
remains a hypothesis that must be tested.

III. TALBOT EFFECT MEASUREMENTS
A. Choice of Grating

To observe self-imaging, we used a Ronchi grating,
whose Fourier coefficients are [2]:
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We selected a period of £ = 250 um (4 lines/mm). After
the beam expansion optics, roughly 27 grating periods
were illuminated.
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B. Integer Talbot Effect

Figure 5 compares theory with experiment for the in-
teger Talbot distance. The experiment shows the correct
number of peaks (20) and a measured average spacing
Axa, = 255.49 um close to the theoretical value.
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FIG. 5. Integer Talbot effect: theoretical a) vs experimental
intensity profile b).

However, the expected “square-like” replication of the
grating is not clearly visible. One possible explanation is
the non-uniform illumination produced by the Gaussian
beam rather than a plane wave, a hypothesis we aim to
verify with improved modeling and measurements. The
theoretical expression used to model fractional distances,

un(or) = 30 BT (el o),
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may yield distortions when the input field deviates from
uniform illumination, something that will need to be ex-
plicitly tested numerically.

C. Fractional Talbot Effect

For the fractional distance z = %ZT, Fig. 6 com-

pares theory and experiment. The smallest theoretical
peak separation is around 2 pm, while our CCD pixel
size is 4.65 pm. Therefore the CCD cannot resolve such
structures.

Even though fine features cannot be resolved, the
experimental pattern still shows the global periodicity
¢ = 250 um. A magnification stage must be added in
future work.
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FIG. 6. Fractional Talbot effect: theory a) vs experiment b)

for z = 188

IV. CONCLUSIONS

In this project we experimentally explored both integer
and fractional Talbot effects using a 405 nm diode laser
and a Ronchi grating of 250 pm period. The integer effect
was partially resolved. That is, we showed the correct
number of peaks and nearly correct spacing. However,
the expected self-imaging structure did not appear with
the clarity predicted by theory. A plausible explanation
is the non-uniform (Gaussian) illumination profile of the
beam, but at this stage this remains a working hypothesis
rather than a confirmed cause.

The fractional Talbot effect presented even stronger
challenges: the theoretical sub-micron periodicities lie far
below the CCD pixel size, making fine-structure resolu-
tion impossible under our current configuration. How-
ever, the global periodicity of £ = 250 um was recovered
experimentally.

Future work should focus on verifying whether the
Gaussian illumination is responsible for deviations at
integer Talbot distances, improving the Gaussian-beam
characterization (particularly the inconsistent zg param-
eter for the W profile), adding a telescopic magnification
stage to match CCD resolution with the fractional Tal-
bot frequencies, and implementing a full numerical simu-
lation including the real illumination profile via Fourier-
space convolution methods.
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