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En este proyecto se midieron distintas Transformadas Fraccionales de Fourier (FrFT) mediante
un sistema óptico y se compararon con sus predicciones teóricas. Se mostró que la discrepancia
reportada en trabajos previos se debía a la falta de un escalamiento adecuado en los parámetros
espaciales y en los datos experimentales. Al incorporar el factor de normalización L =

√
2π/(λf0),

la concordancia entre teoría y experimento se volvió evidente para diferentes órdenes fraccionales.
Las FrFT obtenidas experimentalmente se utilizaron como proyecciones de la función de Wigner,
aprovechando que cada orden fraccional corresponde a una transformación de Radon de la Wigner
rotada un ángulo θ. Los resultados validan la implementación óptica de la FrFT y establecen las
condiciones necesarias para una futura reconstrucción tomográfica completa de la función de Wigner,
incluyendo la necesidad de mediciones con estructura interferencial y de un rango suficientemente
amplio de ángulos.

I. INTRODUCCIÓN

En este proyecto experimental se obtuvieron distintas
mediciones de Transformadas Fraccionales de Fourier
(FrFT) mediante un sistema óptico, además se verificó
su coincidencia con las simulaciones teóricas de estas,
algo que en trabajos previos ([4], [5], [1], [2]) no se ha-
bía conseguido observar. Estas mediciones se realizaron
con el propósito de reconstruir la función de Wigner uti-
lizando un código previamente desarrollado que imple-
menta la transformada inversa de Radon. El resultado
final de esta reconstrucción puede consultarse en la tesis
de pregrado de Jose Alejandro Gutiérrez Cifuentes.

La función de Wigner W (x, p) es una representación
en espacio de fases que describe simultáneamente la
información espacial y frecuencial de una señal óptica
u(x). Por ende, es útil para analizar sistemas ópticos.
Cada medición de intensidad de una señal transformada
por un sistema óptico, corresponde a una proyección de
la función de Wigner sobre alguna dirección del espa-
cio de fases. Matemáticamente, esta proyección es una
transformada de Radon. Para un ángulo de proyección
θ, la Radon genera una sombra o proyección de la Wig-
ner sobre un eje rotado θ en el espacio de fases, el re-
sultado es una marginal, equivalente a una intensidad
observable; medir una intensidad es medir una proyec-
ción de la Wigner.

Según Lohmann [3], la Transformada Fraccional de
Fourier de orden P , rota la Wigner un ángulo θ = Pπ

2 .
Medir una señal después de un sistema óptico que
implementa una Transformada Fraccional de Fourier
(FrFT en inglés) de orden P , equivale a obtener la
transformada de Radon de la función de Wigner
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rotada un ángulo θ. Esta relación permite realizar
una reconstrucción tomográfica: obteniendo experi-
mentalmente diferentes órdenes de FrFT, obtenemos
distintas proyecciones de Radon, que son marginales
de la Wigner, y con todas ellas se puede reconstruir la
función de Wigner mediante la transformada de Radon
inversa.

II. MARCO TEÓRICO

La FrFT se define matemáticamente como (1)

Fθ(p) :=∫ ∞

−∞
f(x)

(
1− i cot θ

2π

)1/2

exp

[
i

2
(x2 + p2) cot θ − ixp csc θ

]
dx.

(1)
Donde f(x) es la señal de entrada sobre la cual se aplica
la FrFT, p es la variable del dominio transformado, θ es
el ángulo que determina cuánto se rota en el espacio de
fases; para θ = 0 se tiene la identidad, y para θ = π/2
es la transformada de Fourier clásica.

Aplicando Fourier optics para el setup que implemen-
ta la FrFT, el cual se detalla en la Sección III, se puede
mostrar que si la amplitud del campo eléctrico incidente
es f(x), el campo eléctrico después de la propagación a
través de una distancia z, una lente f , y una distancia
z de nuevo, resulta una función g(y) descrita por

g(y) =

1

λ2z2

∫ ∞

−∞
f(x) exp

 iπ
(x2 + y2)

(
1− 1

2−z/f

)
λz

− i2π
xy

λz(2− z/f)

 dx.

(2)
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Donde λ es la longitud de onda del láser, x es la va-
riable del dominio original y y es la variable después de
la propagación. Al igualar las ecuaciones (1) y (II) se
pueden identificar los parámetros necesarios para im-
plementar experimentalmente la FrFT. No obstante, en
(1) las variables x y p son adimensionales, mientras que
en (II) poseen unidades físicas. Para poder comparar-
las término a término es necesario adimensionalizar las
variables en (II) mediante el factor√

2π

λf0
.

De este modo, al redefinir x′ = x
√

2π
λf0

y y′ = y
√

2π
λf0

, la
expresión óptica toma la misma forma funcional que la
definición matemática de la FrFT. Al comparar ambas
ecuaciones, se obtienen las relaciones

(
1− 1

2z−z2/f

)
f1

z
= cot θ,

f1
2z − z2/f

= csc θ,

que resultan en

z = f0 tan

(
θ

2

)
, f =

f0
sin θ

, (3)

los cuales son los parámetros utilizados para imple-
mentar experimentalmente la FrFT. El parámetro f0
es arbitrario y corresponde a la distancia focal de la
lente que produce θ = π/2 (la FFT). Debe elegirse de
modo que z < f0 y f > f0: suficientemente grande
para que z sea medible en el laboratorio, pero no tan
grande como para limitar la disponibilidad de lentes
f necesarias para generar distintos órdenes fraccionales.

Tras esta normalización, la FrFT óptica no actúa so-
bre la función original f(x), sino sobre la versión escala-
da f

(
x′
√
λf0/2π

)
. En el caso particular θ = π/2, que

corresponde a la Transformada de Fourier completa, se
obtiene simplemente f = f0 y z = f0. Esto significa
que el sistema óptico implementa la FFT de una fun-
ción escalada por

√
λf0/2π, y que, por la propiedad

habitual de las transformadas de Fourier, la salida debe
escalarse por el factor inverso

√
2π/(λf0). En las trans-

formadas fraccionales con θ ̸= π/2, esta consideración
de escalamiento sigue siendo necesaria, ya que afecta di-
rectamente la relación entre la FrFT teórica y la señal
obtenida experimentalmente.

III. PROTOCOLO PARA LA MEDICIÓN DE
LA FRACTIONAL FOURIER TRANSFORM

La medición de la Transformada Fraccional de Fourier
(FrFT) se lleva a cabo siguiendo un protocolo experi-
mental específico que involucra la generación de haces

paralelos con polarizaciones ortogonales, el uso de len-
tes de diferente distancia focal, y un sistema de captura
basado en un detector CCD. El procedimiento detallado
se puede consultar en la sección de Anexos VIII.

IV. MONTAJE Y PROCEDIMIENTO
EXPERIMENTAL

El montaje utilizado en la mesa óptica para medir dis-
tintas Transformadas Fraccionales de Fourier se mues-
tra en el paso 1 del protocolo que se encuentra en la Sec-
ción VIII. En este, se generan dos haces paralelos con
polarizaciones ortogonales utilizando una PTBD. Des-
pués de pasar por el segundo polarizador lineal, se im-
plementa el arreglo para medir las Transformadas Frac-
cionales de Fourier.

V. IMPLEMENTACIÓN DE LA FRFT PARA
DOS HACES GAUSSIANOS

Para evaluar experimentalmente la Transformada
Fraccional de Fourier (FrFT) utilizamos como entrada
una función compuesta por dos haces gaussianos (gene-
rados como se muestra en el protocolo paso 1), separa-
dos por una distancia 2d y con un ancho característico
1/
√
2a.

El perfil espacial modelado teóricamente es

f(x) =

√
a
(
e−a(x−d)2 + e−a(d+x)2

)2
√
2π

(
e−2ad2 + 1

) ,

el cual está normalizado de modo que∫∞
−∞ |f(x)|2 dx = 1. Como se mencionó en la Sección

II, para comparar este modelo con la implementación
óptica de la FrFT, la variable espacial debe escalarse
mediante el factor L =

√
2π
λf0

. Al reescribir la función
en términos de x′, los parámetros se transforman según

d′ = d

√
2π

λf0
, a′ = a

λf0
2π

,

lo que permite expresar la distribución de entrada en
la forma compatible con la definición matemática de la
FrFT:

f ′(x′) =

√
a′
(
e−a′(x′−d′)2 + e−a′(d′+x′)2

)2
√
2π

(
e−2a′d′2 + 1

) .

Por lo tanto, al generar el modelo teórico de las dis-
tintas FrFT es necesario escalar los parámetros d y a
según las transformaciones anteriores. En cuanto a la
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señal obtenida experimentalmente, solo requiere multi-
plicarse por el factor

√
2π
λf0

, correspondiente a la propie-
dad de escalamiento de las Transformadas de Fourier.
Con estos ajustes, es posible comparar teoría y expe-
rimento bajo la misma normalización. En la sección de
resultados VI se observa la concordancia entre el modelo
teórico y los datos experimentales.

Entonces, al generar el modelo teórico para las dis-
tintas FrFT, es necesario escalar d y a. En cuanto a la
señal obtenida experimentalmente, únicamente se mul-
tiplica por el mismo factor L propio de la propiedad
habitual de las Transformadas de Fourier. Así con estos
escalamientos, en la sección de resultados se muestra la
concordancia entre la teoría y el experimento.

VI. RESULTADOS EXPERIMENTALES
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Figura 1: Captura e vc vcxperimental del haz en z0
(arriba) y perfil de intensidad experimental en la línea
roja, y el ajuste de ambas gaussianas en la línea azul.

En la Figura 1 se muestra el perfil experimental del
haz en el plano inicial. Este resultado se obtiene tras
escalar la coordenada x mediante el factor

√
2π
λf0

, como
se describió en la Sección II, y normalizar la intensidad
en y de modo que el área bajo la curva sea igual a 1. Los
parámetros del ajuste teórico (línea azul) corresponden
a d = 3.45mm, que determina la separación entre las
gaussianas, y a = 1.98mm−2, relacionado con el ancho
mediante 1/

√
2a.

En la Figura 2 se presenta la comparación entre los
perfiles de intensidad experimental y teórico para tres
órdenes fraccionales: θ = 0.927 rad, θ = 1.55 rad y
θ = π/2. Al aplicar el escalamiento de los parámetros
de la señal, a′ = a/L2 y d′ = dL, con L =

√
2π
λf0

, se ob-
tiene una correspondencia notable entre las mediciones
y las predicciones teóricas, validando la implementación

experimental de las distintas FrFT.
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Figura 2: (a) Comparación entre la FrFT experimental
y teórica para una lente de f = 250 mm, con ángulo
θ = 0.927 rad = 53.13◦ (P = . . .). (b) Comparación

entre la FrFT experimental y teórica obtenida
mediante la concatenación de lentes de f = 300, 500 y

500 mm, correspondiente a θ = 1.55 rad = 88.92◦

(P = . . .). (c) Comparación entre la Transformada de
Fourier experimental y teórica para θ = π/2.

VII. CONCLUSIONES Y TRABAJO FUTURO

La discrepancia inicial entre los resultados teóricos y
experimentales se debía a que no se estaba considerando
el factor de escalamiento

L =

√
2π

λf0
,

el cual debe aplicarse tanto a los parámetros de la gaus-
siana (a y d) como a los datos experimentales. En par-
ticular, el eje horizontal de los perfiles medidos también
debe multiplicarse por L para que todas las magnitudes
sean adimensionales y directamente comparables.

Para obtener una reconstrucción precisa de la función
de Wigner, es necesario contar con el mayor número
posible de mediciones de FrFT, y que estas presenten
una forma estructurada, es decir, debe observarse in-
terferencia entre los dos haces gaussianos, ya que esta
información es esencial para reproducir la región de in-
terferencia de la función de Wigner. En el experimento
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No. Lentes Combinación de lentes fi (mm) Ángulo Total (deg) z1(cm) z2 (cm) z3 (cm)
2 250, 400 83.13 10 5.36
2 300, 300 83.621 7.64 7.64
3 250, 500, 1000 88.245 10 4.17 2.02
3 250, 700 86.333 10 2.92 2.92
3 300, 400, 700 88.412 7.64 5.36 2.92
3 300, 500, 500 88.967 7.64 4.17 2.02
3 300, 500, 700 88.578 7.64 4.17 2.02
4 250, 1000, 1000, 1000 87.741 7.64 4.17 2.02
4 300, 500, 1000, 1000 88.462 7.64 4.17 2.02
4 300, 700, 1000, 1000 88.55 7.64 4.17 2.92
4 400, 400, 500, 1000 88.074 5.36 5.36 2.92
4 400, 500, 500, 1000 88.693 5.36 5.36 2.92
4 400, 500, 700, 1000 88.659 5.36 5.36 2.92
4 500, 500, 500, 700 88.366 5.36 4.17 2.92
4 500, 500, 500, 1000 88.539 5.36 4.17 2.92
4 500, 500, 700, 700 88.277 5.36 4.17 2.92

Cuadro I: Parámetros experimentales para mediciones con diferentes combinaciones de lentes.

realizado, dicha interferencia comienza a ser visible a
partir de un ángulo aproximado de θ ≈ 86◦. Para ángu-
los menores, como en la Figura 2(a) correspondiente a
θ = 53.13◦, solo se observan dos picos separados. Con-
forme aumenta θ, ambos picos se aproximan entre sí
hasta producir un patrón de interferencia.

Por lo tanto, las mediciones de FrFT destinadas a la
reconstrucción de la función de Wigner deben obtenerse
preferentemente para ángulos a partir de este umbral.
Para automatizar la selección de configuraciones ópticas
adecuadas, se desarrolló un código cuyo input consiste
en la lista de lentes disponibles en el laboratorio, el ran-

go de ángulos θ deseado y la cantidad máxima permitida
de lentes concatenados.

En esta iteración, la lista de lentes disponibles (en
mm) fue [200, 250, 300, 400, 500, 700, 1000], la cantidad
máxima de lentes concatenados fue 4, y el rango consi-
derado fue 80◦ < θ < 90◦. Las combinaciones resultan-
tes se muestran en la Tabla I.
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Figura 3: Protocolo experimental para la medición de
una Transformada Fraccional de Fourier.
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