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I. INTRODUCTION

Light has many degrees of freedom, including polariza-
tion, frequency, wavelength, Orbital Angular Momentum
(OAM), among others. OAM is a property of light beams
with a helical phase structure, first demonstrated by Allen
in 1992 while studying the behavior of Laguerre-Gauss
beams [1, 2]. Although research on these beams initially
progressed slowly due to the demanding generation pro-
cess, recent advancements in tools such as Spatial Light
Modulators (SLM), which enable the manipulation of
a beam’s transverse phase profile, have facilitated the
generation of OAM light beams. When treated quantum
mechanically, OAM beams are quantized in integer multi-
ples of ℏ per photon, ℓℏ. This integer value is, in principle,
unbounded, meaning that the basis describing the OAM
state of a photon can be very large [3]. This property
makes OAM particularly useful for information storage
and high-dimensional quantum computing.

High-dimensional quantum computing is an emerging
field that offers advantages over traditional qubit based
quantum computing, such as higher information density
per physical entity and more efficient methods for develop-
ing quantum algorithms [4]. As mentioned before, OAM
of light can be used to encode these high-dimensional
quantum states due to its larger basis size.

Just as in classical computing, logic gates form the foun-
dation of information processing in quantum computing.
While there is a quantum analogue for basic classical logic
gates, these gates must be generalized for states with a
basis larger than two basis vectors, leading to the so-called
high-dimensional quantum gates [4]. Thus, it is necessary
to develop methods for manipulating OAM through optical
elements that perform logic gate-like transformations.

As this project is purely theoretical, its development re-
lied on a bibliographic review of the properties of light
beams carrying OAM, as well as the necessary calculations
for a complete understanding of the physical phenomenon.
Additionally, generalizations for the X, Y and Z gates used
for the qubit quantum computing are presented. Moreover,
since the use of tools is essential for generating and manip-
ulating OAM, a theoretical analysis was conducted on how
optical components transform OAM and how these could
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be implemented to construct high-dimensional logic gates
was conducted.

II. RESULTS

A. Orbital Angular Momentum of Light

Light beams carrying OAM are a result of solving the
wave equation for an electromagnetic wave that has the
form

Ẽ(r, t) = Ẽ(r, t) ê, (1)

where ê is a polarization unit vector and Ẽ(r, t) is the com-
plex field associated with the electric field Ẽ(r, t). The elec-
tromagnetic wave is said to propagate in the k direction and
be monochromatic, i.e. to have one and only value for the
angular frequency ω. This is, the complex field can be writ-
ten as

Ẽ(r, t) = Ẽ0(r)e
i(k·r−ωt) (2)

where Ẽ0(r) is a complex amplitude. Due to the field in
equation (1) following wave equation, Ẽ does too. This is

∇2Ẽ(r, t) =
1

c2
∂2Ẽ(r, t)

∂t2

when replacing (2) into this last differential equation, one
finds that

∇2
[
Ẽ0(r)e

ik·r
]
= −ω

2

c2
Ẽ0(r)e

ik·r. (3)

By assuming that k = kẑ, the equation (3) turns into

∇2
⊥Ẽ0(r) + e−ikz

∂2

∂z2

[
Ẽ0(r)e

ikz
]
+ k2Ẽ0(r) = 0;

which, using the paraxial approximation, this is∣∣∣∣∣∂2Ẽ0

∂z2

∣∣∣∣∣≪
∣∣∣∣∣2k∂Ẽ0

∂z

∣∣∣∣∣,
simplifies to

∇2
⊥Ẽ0(r) + 2ik

∂Ẽ0(r)

∂z
= 0

that can be written in cylindrical coordinates as

1

r

∂

∂r

[
r
∂Ẽ0(r)

∂r

]
+

1

r2
∂2Ẽ0(r)

∂ϕ2
+ 2ik

∂Ẽ0(r)

∂z
= 0. (4)
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Now imposing a solution that resembles a propagating
Gaussian Beam, according to Kogelnik and Li [5], the solu-
tion for the electric field is

Ẽ0(r) = g

(
r

w(z)

)
e−i(P+ k

2q r
2+ℓϕ)

here, g
(

r
w(z)

)
is a function depending on r and w(z) the

beam waist, that gives the shape of the Laguerre-Gaussian
beam; P (z) represents a phase shift due to light beam prop-
agation, such that

e−iP (z) =
w0

w(z)
e−i(2p+ℓ+1)ψ(z)

for which ψ(z) = arctan
(
z
zR

)
, w0 is the minimum beam

waist possible in the beam propagation; and q(z) = z− izR
represents the Gaussian variation of intensity, where zR is
the Rayleigh length.

After introducing this assumption into the differential
equation 4 the family of functions solving this equation is
given by the expression [6]

Ẽ0(r) = Cℓp
w0

w(z)

(√
2r

w(z)

)ℓ
×

Lℓp

(
2r2

w2(z)

)
e
− r2

w2(z)
+ik r2

2R(z)
+iℓϕ+iψ(z)

.

From this last equation one can observe that the modes of
the electric field are quantized by p and ℓ being these num-
bers associated with radial and angular part, respectively.

When treated quantum-mechanically, the azimuthal part
of this electric field Ẽ0(r) can be treated as the position
representation of the state |p, ℓ⟩, which can be represented
via an creation-annihilation approach [7]

|p, ℓ⟩ = Cℓp

(
â†+â

†
−

)p (
â†sgn(ℓ)

)|ℓ|
|0⟩ , (5)

i.e. ⟨r, ϕ|p, ℓ⟩ = Ẽ0(r) [7, 8]. Equation (5) uses â± as the
creation operators for left- and right-circular modes. In this
document, only quantization on OAM of the light beam ℓ
will be taken into account, this is: all states will be in basis
{|ℓ⟩}ℓ=d−1

ℓ=0 spanning a d-dimensional Hilbert space.

B. High-dimensional logic gates generalization

When working in a d-dimensional Hilbert space a general-
ization for Pauli operators is needed, as they represent state
transformations analogous to those made by 2-dimensional
quantum computer. Let X̂d and Ẑd be the d-dimensional
generalization for the operators σ̂x and σ̂z, respectively.
These can be written, in the computational basis, as

X̂d =

d−1∑
ℓ=0

|ℓ⊕ 1⟩ ⟨ℓ|

Ẑd =

d−1∑
ℓ=0

ωℓ |ℓ⟩ ⟨ℓ| ,

where ⊕ is the sum modulo d and ω corresponds to a phase
given by ω = e2πi/d. By seeing the definition of Ẑd, it is
clear that {|ℓ⟩} are its eigenstates [9].

Just as with the usual Pauli operators, the properties
[10]:

σ̂mσ̂n = i
∑
k

ϵmnkσ̂k + δmn1̂ (6)

det (σ̂j) = −1 (7)
tr(σ̂j) = 0 (8)

σ̂2
j = 1̂ (9)

hold for its d-dimensional counterparts. By looking at the
property given by equation (6), an expression for the Ŷd can
be deduced

Ŷd = iX̂dẐd.

This means that, for achieving a Ŷd it’s just necessary to
perform X̂d and Ŷd operations.

C. Components transforming OAM of light

One of the optical components that is shown to trans-
form OAM of light is the Dove Prism, which acts on the
beam adding a phase of 2α when mounted at an angle of
α as shown in Figure 1. This means that the exact same
operation Ẑd can be perfomed by using these prisms. When
working in a d-dimensional Hilbert space, the Dove Prism
must be mounted at a π

d angle for it to reproduce the Ẑd.

Additionally, another optical component that transforms
OAM is the Spiral Phase Plate (SPP) that uses a birefrin-
gent material with an azimuthal dependent thickness and
adds an integer value to the topological charge ℓ to any in-
coming light beam. A schematic of this optical element is
shown in Figure 2.

In contrast to Ẑd, X̂d gate is not as easy to reproduce
using optical components. An attempt to reproduce the
results theoretically reported by Wang et al. [11] has been
made. This optical setup is based on what is called a "Par-
ity sorter," which works using a Sagnac interferometer that
ensures a phase difference between clockwise and counter-
clockwise arms. Figure 3 shows the studied setup.

A step-by-step procedure to calculate the state is shown
next, which can be followed using Figure 3:

• Path 1: Light source for the setup is a Gaussian
beam with horizontal polarization |ψ⟩ = |0⟩ |H⟩.

• Path 2: Light reflected by the SLM is turns OAM
into an arbitrary superposition of the basis {|ℓ⟩} and

horizontal polarization |ψ⟩ =

(
d−1∑
ℓ=0

αℓ |ℓ⟩

)
|H⟩.
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Figure 1. Transformation properties of (a) a unmounted Dove
Prism and (b) a Dove Prism mounted at an angle α. Here, n̂DP

denotes a unitary vector perpendicular to the Dove Prism’s top
surface. Note that the angle between ŷ and n̂DP corresponds to
α.

Figure 2. Schematic of a Spiral Phase Plate. The thickness of
the birefrigent material depends on the topological charge that
wants to be induced on the incoming beam ℓ and the azimuthal
angle ϕ. Here, n is the refraction index of the material and λ is
the incoming light’s wavelength.

• Path 3: Light beam passes through a Spiral Phase
Plate (SPP) which adds 1 to the topological charge
of OAM; the beam still has horizontal polarization

|ψ⟩ =

(
d−1∑
ℓ=0

αℓ |ℓ+ 1⟩

)
|H⟩.

• Path 4: Light passes through a Half-Wave
Plate (HWP), this turn the state into |ψ⟩ =(
d−1∑
ℓ=0

αℓ |ℓ+ 1⟩

)
|D⟩.

• Path 5: When light passes through the first Polar-
izing Beam Splitter (PBS) light is put into the state

|ψ⟩ =

(
d−1∑
ℓ=0

αℓ |ℓ+ 1⟩

)
|H⟩.

• Path 5’: The state of the clockwise path after
passing through the first PBS is set to |ψ⟩ =

4

SPP

Dove prism @ 45°

QWP
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Figure 3. Optical setup for the implementation of a parity sorter.
This is supposed to sort between even and odd modes into 9 and
9’ paths, respectively, and then recombine them into path 11.
Each optical path the light beams passes through is label, primed
labels denote that happens at "the same time" as unprimed la-
bels. SLM, SPP, HWP, PBS and QWP are abbreviation for
Spatial Light Modulator, Spiral Phase Plate, Half-Wave Plate,
Polarizing Beam Splitter and Quarter-Wave Plate, respectively.

−

(
d−1∑
ℓ=0

αℓ |ℓ+ 1⟩

)
|V ⟩.

• Path 6: Light beam, after passing Dove Prim
(DP) mounted at 45° turn OAM into |ψ⟩ =

−

(
3∑
ℓ=0

αℓe
−iπ2 (ℓ+1) |ℓ+ 1⟩

)
|H⟩. Here, d is set to 4

because the DP mounted at 45° degrees performs a
Ẑ4 gate.

• Path 6’: Light in the clockwise arm after passing
through the DP, the state of light is turned into |ψ⟩ =(

3∑
ℓ=0

αℓe
iπ2 (ℓ+1) |ℓ+ 1⟩

)
|V ⟩

• Path 7: After passing through the PBS, the state in

this path is |ψ⟩ = 1√
2

(
3∑
ℓ=0

αℓe
−iπ2 (ℓ+1) |ℓ+ 1⟩

)
|H⟩+

1√
2

(
3∑
ℓ=0

αℓe
iπ2 (ℓ+1) |ℓ+ 1⟩

)
|V ⟩.

• Path 8: Light beam passes through a
HWP, the state of light is turned into

|ψ⟩ =

3∑
ℓ=0

cos
(π
2
(ℓ+ 1)

)
|ℓ+ 1⟩ |V ⟩ +

sin
(π
2
(ℓ+ 1)

)
|ℓ+ 1⟩ |H⟩.
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After passing through the second PBS, odd modes won’t
experience any change on path (10), while even modes will
undergo a sign flip due to an extra reflection on path (9’), so
that in (11) it reproduces an X̂d gate transformation [11].

III. CONCLUSIONS

Throughout this project, Laguerre-Gaussian beams were
described using a wave-equation approach, resulting in
an analytical expression for the electric field of Laguerre-
Gaussian modes. Additionally, it was shown that these
modes can also be represented using annihilation and cre-
ation operators for left- and right-circular polarization

modes.

Furthermore, a generalization of quantum logic gates to
high-dimensional spaces was developed for the fundamental
operations X̂, Ŷ , and Ẑ. Since light is used to encode qudits
in the orbital angular momentum (OAM) degree of freedom,
optical components capable of transforming this DoF were
presented, along with a description of how they affect the
OAM states. In particular, the optical setup reported by
Wang et al. [11] was analyzed to reproduce the action of
the generalized X̂d gate.

As part of future perspectives, a more detailed analysis
of the optical components discussed in this work will be
conducted, and the optical setup shown in Figure 3 will be
implemented in the laboratory.
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