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In this project, we explored the use of modular variables for encoding adn manipulating quantum
information. Firstly, we began by motivating modular variables via Aharonov-Bohm effect. Then,
we reproduced the results in Chapter 3 of [I] for the formalism of modular variables and their use
for encoding and manipulating quantum information.

I. INTRODUCTION

Consider an electron confined to a region S C R? where
B=0but A # 0. Thus, there exists a region R = R?\ S
with nonzero magnetic field, i.e. a “hole” in the domain.
A physical realization is a double slit experiment with a
solenoid placed between the slits. Classically, no effect
arises, since no force is acting on the particle. Yet, quan-
tum mechanically, we indeed see an effect: the shifting
of the interference pattern at a given distance. This is
known as the Aharonov-Bohm effect. The effect is de-
picted in the following picture

In this setup, we consider the wave function of the
electron, which, for the sake of the argument, we’ll con-
sider a test function ¢, € D(R). Thus, in the case of the
Aharonov-Bohm effect, the total wave function will be
given by

V(@) = el +£/2) + e (z — £/2),

where £ is the space between slits and ¢ = =5 ®p, ®p be-
ing the magnetic flux through S. Now, consider it’s mo-
mentum distribution, which is approximately what wel’ll
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FIG. 1. Illustration of the Aharonov effect. In our case, z >>
1 and ¥, € D(R) is a test function.
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see at a far distance from the grating. This will be given
by

b(p) = 2¢"*p.(p) cos (5; - g)
— [J(p)[? = Ae(p)]? cos? (p _ ¢> .

Thus we see that, evidently, the distribution is dependent
on the relative phase. However, we can easily see that
since

[$(@)* = e () |*+tpe (w+£/2) [P +2Re(e e (2) e (2+£/2)),

then for any n € N, (z") = 0. We can also see that
because of the properties of test functions, namely, that
their derivative its also a test function with the same
support, for any m € N, (p™) = 0 as well. Thus, we
cannot reconstruct the moment distribution, which is the
same as the position distribution after a screen at large z,
using the any of the moments since they’re not sensible to
the relative phase. This is a reflect that the characteristic
function is not analytic is our case.

So we are in problems. Let us consider the case of the
translation in position by ¢. Thus

(P = (WIT (O)ly) = e/2.

So, we have just found a quantity which is sensible to the
relative phase. Moreover, we see that

i

d ~ i l i A
p ol ~) 5 £pl
i h[H7eh } h(V(x) V(& +1))er?.

Thus, in the case in which the potential is periodic, the
translation operator is a movement constant. The same
thing happens for T, (h/¢). This motivates us to study
the following kind of operators

f(i‘) = Z fnTp(na) ’ g(.f:) = Zgnfm(nﬁ) (1)
nez nez

We notice that this operators are functions of the dis-
placement operators and that they are periodic.

II. MODULAR VARIABLES FORMALISM

Let us examine the commutation relations between this
operators. But first, let us examine the commutation
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relations between the momentum and position displace-
ment operators. Notice that

[Tp(a)a T.(B)] = Tp(a)Tw(B) — Tm(ﬁ)Tp(Q)T; (B) T ().
Besides

T, (B)Ty(a)TH(B)|x) = To(B)Ty(a)|a + B)

= T (B)e' Mz + )
— eiaﬁ/heiaz/hTI(/B)‘x +B>
= P (o)),

This leads us to the conclusion that

[Tp(), To(B)] = (1 — e *Y/") T ()T (B).-

And thus, our displacement operators commute if and
only if there exist an n € N such that

af = nh. (2)

This relation is general for two periodic operators (i.e.
linear combinations of displacement operators), with pe-
riod « and B respectively. That is, this relation applies
to operators in[l]} In this fashion, let us consider the fol-
lowing partition for momentum and position operators

[2):

=2
Il
=,
~
+
&

in which ¢ € R¥, z = (& — z¢)mod({) + =, P =
(p—pe)mod(¢/h) + pe, and N, M are operators that take
integer eigenvalues. We call  and p the modular posi-
tion and momentum operators. It is relevant to say that
the eigenvalues of both modular position and momentum
are in intervals given by Z € [z¢, z¢ + ¢] and [p, pi + h/4],
where x4, py are real constant which we can choose. For
the future calculations, we will choose xy = —¢/2 and
pe = —h/2¢. They have great and profound physical
meaning (see [2]).But not only that, they are very useful
for our purposes.

Notice that our modular position and momentum op-
erators, by equation ??, commute. Thus, we can find a
common eigenbasis |Z,p) our modular eigenstates. In-
deed, this will we our main tool for encoding quantum
information. Let us find analytical expressions for this
eigenbasis. Moreover, it is easy to see that

Ty(a) = eioP/h = b, (3)

since M only takes integer eigenvalues. Same thing hap-
pens with T, (8). Not only that, since

r|z,py = ©z,p) , D=DplT,p),
it follows that [1]

eim/6h|f,]5> — 6ii/€h‘i‘,]§>, (4)

Then, we can check from equation (3), using |3} that for
zeR
(ale™/™ |z, p) = /|2, p)
= /@D (2|7, p) = (z|T, )
= z—2=mlh
= z=Z+mblh

=

m € Z.

Thus, (x|z,p) has a discrete support. Now, notice that
equation (4) implies that

(e /"2, p) = =P Mx
= (x+{|z,p) = e‘iﬂ/h(x T
If we combine both results we can see that
\/ Z e P (x — mbh — T).
mEZ
And it easily follows that in the position basis
|Z, p) 1/ Z e~ P T 4 mlh).
mEZ

And thus, we can write any state |¢) as
02 phj2e
/ / dzdp ¥ (z
e/2J—nj2e

W(Ep) =\ o 30 P mehfy).

mGZ

DI D),

with

Furthermore, when analyzing the free-particle time evo-
lution of these modular eigenstates, one observes a char-
acteristic shear of the phase-space lattice of the form
(z,p) = (z + tp/m,p). This deformation closely resem-
bles the Talbot effect, in which self-imaging and frac-
tional revivals emerge from periodic structures under free
evolution. The analogy highlights the rich interference
phenomena naturally encoded in modular variables and
their relevance for phase-space based quantum informa-
tion protocols.

Moreover, we can write any operator A with our mod-
ular formalism like

2/2 h/20
A:/ dm// dpdy (z, 5l A1, )7, D) (& 7|,
—¢/2 —h/2¢
(6)

where

12
<5_Cvl_)|A|'f,7l_)/> = o5

5 Z PSP 50| AT + 1),
7r

r,SEL

This expressions will be really useful later on when we
define the logical operations in our modular formalism
for quantum computation.



III. DEFINITION ON LOGICAL STATES

Now, we wish to use the formalism we’ve developed for
encoding qubits in phase space. For this purpose, we will
make a partition of the box we are considering. That is,
we will split the integration domain in two. In particular,
we will make the partition with respect to the position.
With this in mind, we will consider now z, = —¢/4. In
this case, it is easy to see that for an arbitrary state |¢)

0/4 h/2£
o= L,
0/4 h/2¢

Now, if a,b € C, we can always find §,¢ € Rand f € C

such that
. (0
a = fsin <) (7)
2
i ¢
b= fe'?cos 3 (8)
|fI=Vlal* + [b]>. (9)
Thus, it follows that there exist functions f(&,p),

0(z,p), p(z,p) such that

U(z,p) = f(z,p) cos ("(JEP)>

2

U(z +€/2,p) = f(z,p)e*@P sin (9(1‘2719)) .

Now since we are considering a torus, we assume 0(Z, p) =

0 and ¢(z,p) = ¢ are constant for a given [¢). In this
case, we have that
0 0\
|w>_005( ) ‘0L>+Sln (2> el¢|1L>, (10)

with
£/4 h/2¢
|0z) / da:/ dpf(z,p)|z,p),

0/4 h/2¢

/4 /26
= [ an [ dpre

£/4 h/2¢
In equations (6) and (7) the function f(Z,p) is arbitrary
as long as it arises form a properly defined modular wave
function ¥(z, p). Equation (5) reflects a dichotomization
of the Hilbert space and defines a general way of encoding
quantum information in a continuous variable system.

The situation is depicted in [2]

In particular, we can choose f(Z,p) to be (in the mod-
ular box domain) a two variable Gaussian spike with
widths A and x in modular position and momentum [IJ.

In particular, if we choose the limit in which A, x — 0,
we arrive to the usual GKP codewords [3]

0)axp = Z |2ﬁm>z
Dakp = Z ’(Qm + 1)\/E>m

(11)

p)lz+4/2,p).  (12)

(13)

(14)

)|z, D)+ (Z+L£/2,D)|Z+L/2,p).

P [ —

x
2/t

o TTE
)= [, @[ s pma ]
) /‘441, » dpf(z,p)|T {//2[})

FIG. 2. a) Visual representation of the partition of phase space
and the partition of the modular box in which we are working.
The arrows represent the Pauli operations X, Y and Z. b) Visual
representation of the partition seen in the position representantion.
¢) Logical states which arise from this partition. Taken from [I].
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to low error probability.

A physical realization of this is procedure is by using
a harmonic oscillator and encoding the GKP codewords
in coherent states.

Even though our modular variable formalism is beau-
tiful and relatively easy to manipulate, as everything is
life, there is a price that has to be paid. And that price is
that modular eigenstates are non-physical since they’re
not normalizable (they’re not in the Hilbert space we're
considering, Ly(C)). That is, our GKP codespace is non-
physical. A way of solving this problem is by instead of
using delta peaks, we use a Gaussian spike of width A and
multiplying them by a Gaussian envelope of widthl/x [,
such that

N e (zr)%/2 Z e—(x—mé)z/QAz’

w<$|0>GKP ~ m -

meZ

where |6>GKP is our aprroximate codeword and N is a
normalization constant. A similar thing happens with
|1>GKP. In the limit is which A — 0 and kK — oo we
get our idealized codewords. Another and important ap-
proximation is given by introducing small weighted dis-

placements to [13| and [14] [3]:
Noxp = / dudvn(u, v)e™ 2T, ()T, (0) i), (15)
R

where i =0, 1.

IV. LOGICAL OPERATIONS IN THE
MODULAR LOGICAL SPACE

In order to define the Pauli operations in our formal-
ism, let us first define the displacement operator, which
is given by

D(p,v) = evE=inp, (16)
And, if one uses [6 one can show that (see [1])
_ 3¢/4 h/2¢ o
D(u, / dz dp ™S PNT i, 5+ v)(E, B,
/4 —hy2t

(17)



with 7(Z,p) = i(p + v)(T+ p) — ip(Z + v). With this
operator is easy to define X and Z as D(0,h/¢) and
D(¢/2,0). Similarly, we define Y = DT(¢/2,h/f). We
notice that even tough this operators are analogous to
the usual Pauli matrices, the big problem is that they’re
not selfadjoint. However, we can deal with this prob-
lem by restricting ourselves to the GKP codespace we
described in the last section.

V. CONCLUSIONS

Throughout this project, we achieved several objec-
tives. First, we successfully motivated the introduction

of modular variables by connecting them to physically
meaningful scenarios such as the Aharonov-Bohm effect.
Second, we demonstrated their potential as a resource for
encoding and manipulating quantum information, em-
phasizing how modular degrees of freedom naturally sup-
port grid-like structures relevant for fault-tolerant archi-
tectures. Finally, future work includes developing numer-
ical simulations aimed at implementing GKP-like encod-
ing schemes using platforms such as Qjiskit or PennyLane,
in order to explore practical realizations of modular-
variable quantum information processing. An additional
point worth emphasizing is the importance of analyzing
the dynamical behavior of modular eigenstates under free
evolution, since their shearing and revival structure is
fundamental for understanding phase—space encodings.
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